If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-50x-2500=0
a = 1; b = -50; c = -2500;
Δ = b2-4ac
Δ = -502-4·1·(-2500)
Δ = 12500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12500}=\sqrt{2500*5}=\sqrt{2500}*\sqrt{5}=50\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-50\sqrt{5}}{2*1}=\frac{50-50\sqrt{5}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+50\sqrt{5}}{2*1}=\frac{50+50\sqrt{5}}{2} $
| 2/5x3/5=5 | | 8c+5c=15 | | 107+2x=3x+19 | | 8+8+7+16=h | | 6(x+1)+5=13-²+6x | | 2(k-12)=6 | | 30+.5=1.25x | | v/2=6.4 | | w^2-4w-65=0 | | 21/x+3=7/2 | | 97=-16t^2+72t | | 2(a+)+6a=48 | | 3x+10=3+10 | | (7y-13)=57.45 | | Y=200x+1250 | | Y=4/3(x-2)-6 | | 10x-10=140 | | 4x-12x=x2 | | 3/4x+1/5=3 | | a+10+44=2*a | | -15=5+3r-2 | | -1/12s=-24 | | x/10.24=8 | | 3y+9y-24=-4+6y-8 | | 7g+3.74=36.22 | | a/9=-10 | | -13m+12=-4m | | -1/12q=-24 | | -1024=32a | | (3z-3)=151.6 | | 4.6=4m-3. | | N-2(n-20)=9n |